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We establish sufficient conditions for the successful completion of a differ- 
ential-difference game of encounter in the case when the target set is a sub- 
set of the space of initial states of the system. The paper is closely related 
to the investigatiom in [1 - 6]. 

1 .  Consider the system 

x ' ( t )  = A  (t) x ( t )  + A- . ( t )  x ( t  - - z )  , -+-B( t )  u - - C ( t )  v +  w ( t )  (1.1) 

Here x is the phase vector;  vecton u and v are the controls of the fi~t and second 
players, respect/rely,  moreover, 

,~ ~ P (t), v ~ Q (t) ( t . 2 )  

where P (t), Q (t) am convex eompacta connnuom in t; the matrices A (t), A-. (t), 
B (t), C (t) are continuous; w (t) is inte~Fableon any interval of the t -ax is ;  
T = cons t  ~ 0. The segment xt  (s) = x (t - r  s) of a trajectory of ( I .  I)  (here and 
late~ s varies within the limits --T ~ $ ~ 0) is called the state of system ( I .  I )  at 
instant t .  

Let H be the space of vector-valued functiom x (s) which are square summable in 
the quantity II x (s) lh with the norm 

0 

(El X ) '  " " ;I x (s)[1~ = x (0)It = + il x (s) , :  d s  , II x II" = xx- ~ - . . .  + z . -  

<x, y )  is the scalar product in H .  The game to be considered consists of the follow- 
ing [6]. We are given an initial instant to, an initial state x ° (s) ~ H ,  a final instant 
@ ~ to , and a certain set M ~ H (the target). The first player, knowing at each 
instant r ~ tto, ~ ] the state xt [" ] = xt [s] = x It -+- 6 of the system, strives to 
choose his own control so that the final state xa[s] would lie in M. The second 
player chooses his control by any means and strives, to the contrary, to have x~ [s] 

M. Let us make the ixoblem statement more l~cise. We introduce some definitiom 
[5, 6]. 

D e f i n i t i o n  1 . 1 .  A function u( t )  (v (t)), summable on [to, t~] and satisfying 
the condition 

u (t) ~ P (t) (v (t) ~ Q (t)) 

for almost all t ~ [to, ~ ], is called the first (second) player's program control The 
set of all l~ogram controls of the first (second) player is denoted {u} ({v}).  

D e f i n i t i o n  I .  2.  1"° A rule which associates the set 
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u (p) - u (t, z (s)) = p (t) ( ¢  (p) = v (t, z (s)) = Q (t)) 

with each pair p = {t, z (s) }, t ~ [to, ~ 1, x (s) ~ H ,  named the pmition of the 
game, is called the first (second) player's strategy U (V) . 

2". A strategy U (Y) of the first (second) player is said to be admissible if the set 
U (t, x (s)) (Y (t. x (s))) defining this strategy is ~ v e x .  cksed,  and upper semiconti- 
auous relative to inclmion in t, x i s) (in t ,  from the right). 

3". The Fast (second) player's trivial strategy U~ iVT) is given by the sets 
(t, z (s)) = p (t) ( v  (t, z (s)) = Q (t)). 
4". The first (second) player's program strategy U~ (Vv) is given by the sets 

U (t, x (s)) --" {u (t)} ( g  (t, x (s)) = {v (t)}), where u (t) (v(t)) is the first(second) 
player's program conuoL 

D e f i n i t i o n  1.  Z. 1 " .  Every function x [t], absolutely continuous on [to, ~ ]  
and satisfying the condition 

x [to + s] = x ° (s) i t .3)  

and.for almost all t ~ [to, 0 ] , the equality 

x" [el = A (t) x [ t l  + A~ (t) x [t --'~1 + B (t) u It] - -  C (t) v [t] -+- w (t) 

where the summable functions tt [el and v [el satUfy the conditions tt [t] ~ U ~t. 
z t  [sl), v [tl ~ Q (t) for almost all t ~ lto, g 1, is called a motion z [t, P0, U, 
VT] of system (1.1) from the position P0 = {to, x ° (s)}, corresponding to the strate- 

gies U, V? (U  is admissible). 
2". An absolutely continuous function x [t | ,  satisfying condition (1.3) and, for 

almmt all t ~ [to, ~ ] ,  the equality 

z 'I t ]  ----A(t)  z [ t l + A ~ ( t ) z i t - - ~ l + B ( t ) u i t ) - - C ( t ) v ( t ) + w ( t )  

is called a motion z It, Po, U~, V~I of system (1.1) from the position Po = {to, 
x ° (s)}, corresponding to the strategies U~, V~. 

The sysmm's motions defined in such a manner exist ~ ] .  
P r o b l e m  1.  Given an initial position Po ~ {to, z ° is)}, a final instantO ~ to ,  

and a closed convex bounded set M c H (the target).  Construct the first player's 
admissible strasegy U ° such that all motions x [el ~ x [t, P0, U°, VT ] satisfy the 
condition Xa [S] ~ M.  

We also present the following definitions [8, 7]. 
D e f i n i t i o n  1 . 4 .  The sets W t ~ H, t o ~ t ~ , ~  are strongly u-stable if, 

whatever be t ,  ~ It0, ~ ) ,  t* ~ ( t . ,  ~1 ,  z (s) ~ We., v (t) ~ { v } ,  thea~ exists 
u (t) ~ {u)  such that the motion x [t] = x [t, {t., z (s)}, U~, g~l satisfies the 
condition zt .  Is] ~ Wu.. 

D e f i n i t i o n  1 . 5 .  The set W e .  (~), t .  ~ ~, of l~ogram absorption of r~ge t  
M by system (1.1) at the imtant ~ is the collection of all x (s) ~ H IXmemtng the 
1xoperty : for am] v (t) ~ {v} theze exists u (t) ~ {u} such that the motion 
X It] ---- z [t, { t . ,  x (S)}, Uu, gv] satisfies the condition xa [s] ~ M.  

In what follows it should be kept in mind that the concepts encountered below, which 
are not accompanied by explanations, are contained in [5, 6].  The following assertion 
stems from Lemma 4 of [6]. 

T h e o r e m  1 . 1 .  Let the initial position P0 ~- {to, x° (s)} be such that x ° (s) 
Wto (0). If the sets W t (0), to ~-~ t d O  are strongly u-stable, then the strategy U ~ 



Dlffe~en~lal-dAffe~enee ~ m  o f  encounter 3 

e x ~ m a l  to them solves Problem I .  
On the basis of the theorem on the fixed point of a multivalued mapp/ng, sufficient con- 

ditions were established in ['6] for the strong u-stability of the program ab~'ption sets 
of a finite-dimensional target in the general case of a nonlinear system with aftereffect. 
Such conditions were formulated in an analogous manner also for the problem of guid- 
ance onw a functional target ( ' ) .  In the care o f ~ e  linear system being considered we 
indicate the ne_o~_-~ary and sufficient conditions (and the effective sufficient conditions 
ensuing from them) for the s~ong u.-stability of the program absorption sets of a func- 
tional t~rgeL Let us state two auxiliary assertions analogom m the ¢orr~ponding asser- 
tiom in [5"]. 

U e m m a  1 . 1 .  x ( s ) ~  W ~ ( o )  i f a n d o n l y i f  

min[Ihll~< x {p (O, t, h) + (At, ~x, h)} ~ 0 ( i .4)  
Here 

p (~,  t, h) ----r (~,  t, h) - - m i n i m  (y,  h )  

r (t*, t . ,  h) ---- r x (t*, t . ,  h) - -  r~ (t*, t . ,  h) + ra (t*, t . ,  h) 

t* 

t .  

t* 

t .  

t* 

r ,  ( t ' ,  t . ,  h) = ( h ,  i F (t* + s, ~)w ( ~ ) d ~  - -  
t "  

(s) ---- Y (t* + s, t , )  V (0) + 
0 

S F (t* + s, t ,  -+- * + ~l) .4, ( t ,  + "r + B) Y 0,) l (s, Y) 

for 5 ----t* - - t .  ~ ,  

A t .  t*Y (s) = 
! (~, Y), 
y (s + 6), 

for 5 ----t* - - t . ~ ¢ , t h e m a t r i x  F (~, lq) 

, ~  [--6, 0] 
s E  [--~, - -6)  

satisfies the condirlom: F (~, ~ ) ~  E 
is a unit matrix, F (~, ~l) ---- 0 for T ! ~ ~ ( i .5)  

Le m m a 1 . 2 .  The sets Wt (0),  t0 ~<~ t ~ 0 are strongly u.-stable if  and only if  

infhes {r (t*, t . ,  h) + in f~wt . (o )  <At., t .Y, h ) - - i n f ~ w t . ( . )  <Y, .h)} ~ 0 

for any t . ~  [ to ,~ ) ,  t* ~ ( t . , 0 ] .  Here S is the set of a l l h ~ H ,  ] J h [ ] ~ l ,  
on which the difference 

a (h) = i n f ~ w t . ( a ) ( A t . ,  t.Y, h)  - -  infv~wt.(~) (Y, h )  
is defined (the values a (h) ---- -~- ~ are allowed). 

*) This question was considered by hu S. Osipov : Problems in the Theory of Differen- 
t ial-Difference Games. Doctoral Dissertation, Sverdlovsk. 1971. 
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le t  Bt . . t*  be an operator adjoint to A~..t*, i .e .  such that 

( A t , , t , x ,  h)-.~ <x, B t , . t . h )  

for any h and x from H It is not difficult to establish that Bt. , t*  has the form 
O 

Br, ,  t*h (s) = T' (t*, t , ,  s) h (0) + ~ T' (t* q- rl, t , ,  s) h (rl) d~l -----" g (s, h) 

fo r8  = t *  - - t .  ~ x ,  

g(s,h), s ~ [ - - ' r , - - ' r ~ - 8 ] ,  s = 0  
Bt. ,  t*h(8)= h (s - -  8), s ~ (-- X -+- 6, 0) 

for 8 = t *  - - t . ~ x  . Here 

T(t,  ~, s) --- { 
F(t, ~). 8--'DO 
F (t, ~ + "c ~. s) .4~ (~. + "c -r- s}, s ~ [ - - x ,  0) 

and the prime denotes trampmitloa. From lemma 1.2 and from the theorem on the 
separability of convex sets in space H there stem the following necessary and sufficient 
conditions for the strong u-stability of the program absorption sets W t (~) • 

T h e o r e m  1 . 2 .  The sets W t (~) ,  to ~ t ~ , a r e  strongly u-stable if and only 
if  

infllhll~._< z {r (t*, t . ,  Bt . ,  ~h) + inf~ewt.(~)(//, Bt . ,  ~h) - -  

~.nfvewt,(~ ) <y, Bt, .  ~h>} ~ 0 (1.6) 

for any t .  ~ [to, O), t* ~ ( t . ,  Ol, t* - -  t .  ~ T .  

9.. The verification of condition (1.6) is difficult. Relying on Theorem 1.2, we 
indicate effective sufficient conditiom for the strong u-stability of sets ;~'t (0) .  By 
Wt (~,  ~q) we denote the program al~orption set at instant ~ of a closed ~ °neighbor- 
hood ~[~' of set ~f.  By virtue of l emma 1.1 and of the definition of the operator Bt.a, 

Wt (~, q) = {x (s) I minll~ll~<~ {P (ft, t, h, rl) ::- (x, Bt, ~ ) l  ~ 0} (2.1) 

p ( ~ ,  t, h, ~ 1 ) = P ( ~ ,  t, h ) + ~ q l l h l l ,  (2.2) 

Further, let the following conditiom be fulfilled : 
a) the function p (~,  t, h) is convex in h for all t ~ [ t0,~];  
b) the sets ~r t (~,  ~i) age not empty for all ~ ~ 0, t ~ [to, ~ ]. 

We introduce the notation 
At = At. , H ,  B~ --'-- B~. ~'I 

if h ~ B t ,  thews Kt  (h) = {g [ Bt.ag = h }. It is not difficult to establish that the 
sul~pace Et  of space H ,  orthogonal to the sul~pace .~it (th the clmtu~ of A t), is the 
nucleus of the operat~ ~t .a.  From this and from the fact that ~ is the direct sum of 
.2~ t and Et ,  we obtain the following a~ertion. 

L e m m a  2 . 1 .  If h ~ Bt ,  then there exists a unique element ht from Kt  (h), 
belonging to ~ t ,  and 

Kt  (h) = h t  "Jr" Et  
We set 

p~ (h, "q) = sup~ew~(o. ~) <y, h> 

L e m m a  2 . 2 .  If h ~ B t ,  then 

Pt Ch, ~q) = in fg~x , (h )  p (0 ,  t, - -  g ,  rl) 
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P r o o f .  L e t h ~ B t .  In view of  (2 .1) ,  foz any z ~ W t ( O ,  1]) a n d a n y g ~ K t ( h )  

<z, h> ~ p (#, t, - -  g,~l 
whence 

Pt (h, TI) ~ iufg~/~t(h ) p (~, t, - -  g, 1]) 

We show that  for any ~ ~> 0 there  exists z E Wt (~, ~) such that  

<x. h> ~> infgGKt(h) 9 (0, t, - -  g, ~1) - -  811 h t ~ (2.8) 

Let k ~ .~t. We set  N (k) ffi k + Et. On ,~t we def ine a funct ional  

p (k) = infg~N(~ ) p (0, t, - -  g, 1]) 

By Lemma 2 .1 ,  N (It) = Kt (t), l ~ Bt, therefore,  

p (lt) = infgeEt(t) p (0, t, - -  g, 1]) (2.4) 

I t  is not d i f f icu l t  to es tabl ish that  funct ional  p (k) is convex,  posi t ively homogeneous,  
and bounded.  

Let us specify  a subset L of  space At in the fol lowing ma nne r :  y from Xt belongs 
to L i f  and only i f  <y, k> ~ p (k) for a l l  k ~ A t .  I t  can be shown chat z ~ Wt (~, ~) 
i f  and only i f  At,  a z E L. Indeed,  le t  At,8¢ E L. Let g be an arbiutary e l e m e n t  of  H 
and l e tB t ,  # g = / .Then ,  talcing (2 .4)  into account ,  we obta in  

<z, Bt, #g> • <z, Bt. # lt> == <At, #z, It> ~ p (lt) ~ p (~, t, - -  g, 1]) 

whence z ~ Wt (0, 11). Conversely ,  le t  z ~ W: (e,  ~). Let k be an a rb iua ry  e l e m e n t  of  

.~t. For any g ~ N (k) , 
<z, Bt, # g> + p (~, t, g, ~1) ~ 0 

or, s ince <At, # : ,  g> ----- <At, # z, k> . 

<A~,# z, --k> ~ p (#, t, g, ~) 

Because g ~ N (k) is atbiuary, 

<At, sz, -- k> < infgeN(k ) p (0, t, g, ~l) == P (-- k) 

hence, At, # z E L. According to Theorem 2.2 in [7], 

p (k) m m a x ~ L  (y, k> (2.5) 

Let 0 < ~ <~ ~. ~oceeding fzom (2.1) we can show that 

At, # W  t (0, Vh) + {y E A t I ~ Y ~: ~ 1] - -  'qt} ~ At, # W  t (0, 11) C .L 

Then for an e l e m e n t  z:  E At, # Wt (~, Tit) We have, b e c a m e  L is c lmed  in ~ t ,  

where $ (~ - -  ~3x) is a c losed sphere in ~Tt of  radius ~l - -  ~h with cen te r  a t  0. Let z be 
a n  e l e m e n t  of  L such that  <z, hi> : p (ht). We set 

C : { ~ : L ~ +  O - - ~ ) : l O < ~ < i ,  z ~ z ~ ÷  S (~ - - ~ ) }  

Since L is convex,  C C L. Let z be an a rb i~ary  posi t ive number  and le t  the e l e m e n t  
U~ = ~z~ + (t --~x) z he such that  it U~ - -  z~ ll~ < ~ / 2. Then,  c lea r ly ,  the 7 u (~ - -  ~t)- 
neighborhood of element ~x is contained in C. Since C ~ L, we conclude that in space 
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Xt  some 6 -neighborhood S s, 5 <~ e / 2, of  e l emen t  y] l ies in L. Since Yt ~ .~t, we 
can find y ~ At = At,  ~ H such that  y ~ S~; therefore, LI y - -  z il-. ~ ~. Since S s C L, 
an e l emen t  z such that  At,a z = y, belongs to Wt (~, 11). Moreover, with due regard 

to (2. 4), we have 
< z ,  h> I <x ,  Bt. oht> == <At, sz ,  ht> ~ <:, ht> - -  g ~ h t ]].~ •= P (h t )  - -  ~ U ht ~. =ffi 

infg~Kt(h) p ( • , t, ~ g, 11) ~ ~ ~ h t I]~ 

Relation (2. 3) is proved. The l e m m a  is proved. 
L e m m a  2 . 3 .  Let a function z (~) be summable  on I t . ,  t*] ,  8 ----- t* - -  t .  

% t* < 0 .  Then t .  t* 

Z (s) ----- A t , , ,  S F (t* + s, ~) z (~) d~ - -  ~ F (~ + s, ~) z (~) d~ 
t ,  t ,  

P r o o f .  At first let A ---- 0 - -  t* ~ "~. Then. applying the Fubini theorem, we have 

t* 

Z (s) = 13 (~) = ~ • (s, t ' ,  ~,) z (~) d~ 
t ,  

0 

¢D(s, t, ~ ) - -  F (O.q- s, t) F (t, ~) .q- f F (O'~" s' f -}''c +' 11) A= (t + ~ + n) F (t +11' ~)dn 

From p~operties (1 .5)  of  the matr ix  F (~, ~) we obtain 

a ¢  (s, t, ~).I at ff i  o 

f o r a H  t , ~ , t > ~ .  Hence f o r a H  ~ E I t . , t * )  

Comequent ly ,  the l e m m a ' s  a.~ertion is vaUd when A =ffi O - -  t* ~ • .  
Let A =ffi ~ - -  t" ~ z Then for s ~ {--A, 0], as above, Z (s) == ~ (s): for s ~ [ - -z , - -A)  

t* 

Z (s) =..~ -~ C t• ÷ A + t, ~) z C~) d~ ffi ~ Cs) 
t ,  

The ~ m m a  is proved. 
T h e o r e m  2 . 1 .  Let conditions (a) and (b) be fulfil led. Then the set W t  (O, 1~), 

to ~ t ~ #  is ~ o n g l y  u°s tab le  for any ~ ~ 0. 
P r o o f .  Let us show that  condit ion (1 .6)  of  Theorem 1 .2  is fulfilled for any t . ~  

[to, O) ,  t* ~ ( t . ,  O], t* - - t .  ~ x .  Let h 0 b e  an arbi~zary e lement ,  11 holl~ ~ i ,  
B t . , s h o  == 1~, Bt* ,sho ---- hs. FurtheL let g be an arbil~at T. e l emen t  of" K t *  (h=). 
Using Lemma 2.3  and the e x l m ~ t o m  for r~ (t*, t , ,  h) (i = i ,  2, 3), we obtain 

t*  

~, (t,, t, ,  ~,~) = m ~ , ~ , , ~  <g ,  I F (~ + ~, ~) B (~) u (~) d~> = p, (g) 
t .  

t* 

tw. 

~,(~', ~,, ~) -- (g,I F (~ + , ,  ~) ~ (~) ~ /  P~ (g) 

t ,  

Comequent iy ,  
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r(t*, t . ,  h2) : Pl(g) - -  P~ (g) ÷ P3 (g), g ~ K t .  (hs) (2.6) 

By Lemma 2.2, 

inf lmwt.(e ,  ~) (y,  h.z) = - -  pt ( - -  h~, ~1) ---- - -  infltGgt*(~) P ({~, re, k, rl) 

From this and from (2.6), 

r (t*, t . ,  ha) - -  inft~wt.(~,  ~) (Y, ha) = inftmtrt*(~,) [P (O, t*, g, ~1) -4- 

r (t*, t.., h=)] = inf~K, . (n , ){[r l  (0, t*, g ) +  Pl (g)] - -  

[r~ (O, t*, g) --'. p, (g)] + It3 (O, t*, g) + Ps (g)] - -  T1U ha B.} = 

infs~rt.<h,) p (9, t . ,  g, 11) (2.7) 

Further, 

inft~wt.¢o,,~) (y,  hi> = - -  I)t. ( - -h i ,  ~!) = -- inf tmxt.(h,)P (O, t . ,  g, T1) (2.8) 

In view of (2. 7), (2. 8) the expression occurring under the inf  sign in (I .  6) equah, for 
h = h  o , 

a (ho) = infs~l:t.<~,) P (0, t . ,  g, ~1) - -  inftmKt.(h,) P (9, t , ,  g, TI) (2.9) 

Obviously, 
K, (Bt.a h0) ---- h0 + Kt (0) (2.10) 

From the definition of the operator At. , t* it follows that 

Bt*, ~ ---~ Be.. t*Bt*, # 

Therefore, if  Bt*.ag ----- 0, tlmn B:. .ag = 0; comequently, K t .  (0) ~ Kt* (0). 
Hence, from (2.9) and (2,10) and from the definition of the elements ~ ,  h2 it follows 
that a (h0) > 0. The theorem is proved, because h 0 is arbitrary. 

T h • o r e m 2 . 2 .  Let conditions (a) and (b) be fulfilled and let the set Wto (0) 
not be erupt 7.  Then the sets Wt (i~), to ~ t ~ ,  are nonempt~ and s~ongly u-stable. 

P r o o f .  Let t* ~ (to, O]. We show that We* (~) is not empty. Let x (s) 
ltZto CO), P ----- {t0, x (s)}, v it) ~ (v}. Let us prove that for some u* (t) ~ (u} 
the motion x* It] = x It, p, U~.,  V v ] satisfies the condition x*t.[s] ~ We* (0) .  
Let ~qi --*- 0, rl~ > Tb+ 1 > 0, and ut (t) ~ {u} be such that the motio-t x ~ it] = 
x It, p, Uva, l/~j satisfy the conditions x t .  i [s] ~ W~. (O, rb). Such u~ (t) exist 
since the sets W t  (0 , ~1~), t o ~ t ~ 0 are strongly u-stable according to Theorem 
2.~ an~ z (s) ~ we.  (~ ) = We. (~ , n~). 

Since {u} is weakly bieompact in L :  [to, t*], we can take i t (by choking a subse- 
quence if  necessary) that 

u~ (t) ~ u* (t) weakly in L,  [t o , t*] (2 . t t )  

By the C auchy formula, ¢ 

z ~[tl  = A,..tz(O)+ IF(t, ~)[B(~)u~(~)--C(~)v(~)-- w ( ~ ) l d ~  (2.12) 
t¢ 

Proceeding from this expression we can show that the set of functions {x i [t] ] i = t ,  
2 . . . .  } is uniformly bounded and equicontinuous on It0, t*], i .e .  is compect.in C [to, 
t* ]. Therefore, we can take it (by choosing a subsequence if necessary) that x'[t l-*-Y(t)  
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in C [t o. t*]. On the other hand. from (2.11).(2.12) it follows that x i [t] ~ x* [t] --- 
x [t, p, Uu*, Vv] for any t ~ [to, t*]. Therefore, x* [t] ---- y (t), whence it fol- 
lows that 

Xt* ~ [S] ---, Xt** Is] in H (2.13) 

Let m select an arbitrary element h ~ H.  Since xt* ~ ~ Wt* (0, Th), 

( x , ,  ~, h> ~ p , .  (h, ~h) 

Since  ~ |  > ~ i+l ,  Wi, (0, Th) ~ Wt* (O, Th+ 0.  Consequently, Pt* (h, Th) 
decreases monoto~cally as i increases. Therefor% with due regard to (2.13), we have 

(xt**,  h )  = l im~-~ ( x t .  ~, h)  ~ iaf~ pf.  (h, ~h) (2. t4)  

Hence, xt** ~ N W t .  (0, 1]). Indeed, if xt** ~ ~ Wt* (0, Tl), then a number i 0 
~>0 ~>o 

exists such that xt** ~ W , ,  (~, 1]i.), therefore. <xt**, h> > P,* (h, 1]i.) for some 
h, which contradicts (2.14) which is valid for all h. But, obviously, ~ Wt* (~, ~l) ----- 

W t ,  (~). we have lxoven that Wt* (0) is uonempty. The proof of the s~ong u-stability 
is a verbatim repetition of the Ixoof carried out for the nonemptiness with the instant 
t o replaced everywhere by an arhi~ary imtant t ,  ~ [to, t*).  

3 .  Let us ascertain the conditions necessary and sufficient for the fulfillment of 
assumption (b) (for the nonemptincss of all sets Wt (0, TI), to ~ t ~ , 1] ~ 0). 

L e m m a  3 . 1 .  Wt(0 ,1 ] )  isnonemptyforany1] ~ O i fandonly i f  p(O,  t, 
h) > 0  for all h ~ _ K t ( O )  = { h l B t , ~ h  = 0 } .  

P r o o f .  Let Wt (0, ~)be nonempty for any 71 > O; y(~) ~ W t (0, 13). Then, in view 
of (2.1), for any h ,  

<y(~), Bt, a h> + p (~, t, h, T I) > 0 

If Bt, a h = 0, then by (2. 2) 
p (0, t,h, ~l) ---- p (0, t, h)--}-~l [I h I]-. > 0 

wharevet be ~1 :> O; hence p (0, t, h) > O. 
Conversely, let p (0, t, h) > 0 for all h ~ Kt (0). On -/t we define a functional 

q (k) ----- inf~_N(~ ) p (~, t, --g), N (k) = k .-~ Et 

It can be verified that under the a~umptiom adopted the functional q (k) is convex. 
positl.vely homogeneous, and hounded. Let l ~ ~t  be the support functional to q (k) 
at the point k = 0 (such a functional exists [8]) .  We have 

minll~ll~ ~ [q (k) - -  <l, k>] ~ 0 (3.i) 

Let ~l > 0 and let p (k) be the functional on ~t  introduced in the proof of Lemma 

2.2,  p (k) = inf~N(~ ) p (0, t, --g, ~) 

Proceeding from (2.2) we can show that 

p (k) ~ q (k) "t- ~l [[kl[.= (3.2) 

Let l~ ~ At, II lx - -  l I1~< ~- Then f~om (3.1) , (3 .2) ,and the positive homogeneity of 
p (k) it follows that p(k)-- <I:, k> > 0, for all h~.~It, i .e .  l: ~ L  .~Lemma 2.2).  But 
then, as we have shown in the proof of Lemma 2.2,  an element z such that At, $ z = I x 
belongs to Wt (~, ~l). The lemma is pcoved. 
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Lemma 3 . 2 .  If p(@, to, h) ~ 0 forall h ~ Kt. (O), then, for awl t ~ [to, 
0], P (0, t, h) ~ 0 for all h ~ Kt (0). 

P r o o f. Suppose that the lemma's amumptiom am fulfilled. Let us admit that for 
some t* ~ to there exists an element h* ~ Kt. (0) such that p (O, t*, h*) <: 0. It is 
not difficult to verify that the equality 

4~ 4t 

<h, ~F(O-~- , ,~ ) z (~ )d~)==S[B~ . .h (O)] '=(~)d~ ,  t E [ t o ,  O], b ~ H  (3.3) 
t 

is fulfilled for any summable function = (~), t o ~ ~ ~ 0 .  As was established in the 
proof of Theorem 2. I .  K~ (0) ~ Kt.  (0) for I ~ t*. Hence, for ~ ~ t* ,  BE,# h* = 0 
in H, consequently, B~,$ h ~ (0) = 0. Therefore. in view of (3. 3) we have 

to t *  

From this i t  follows that r i (~, to, h*) == rt (~, t*, h*) (~ ----- i ,  2, 3); hence, p (~, to, h*) s 
p (0, t*,  h o) ~ 0, but this contradicts the assumption since h* ~ K~. (0) C Kto (0). The 
lemma is proved. 

The following assertion szems from Lemmas 3.1 and 3.2. 

T h • o r • m 3.1. Each of the following conditiom is equivalent to condition (b) : 
c) p (9, to, h) ~ 0 for all h ~ Kto (0); 
d) W~0 (@, ~I) is nonempty for all I] ~ 0. 

The following result ensues from Theo~ms 1.1, 2. Z, 3.1. 
Theorem 3.2. If the functional p(O, t, h) is convex inh for allt~ [to, O] 

(condition (a) is fulfilled) and z ° (s) ~ I~r~° (~), then the s~aregy U ~ ex~mal to 
the sets W~ (I~), t o ~<~ t ~0, solves Problem 1. 

I 
0,5 7 0 

, b 

Fig. 1 

Let us comider the following problem. 
P r o b l e m  2.  Given system (1.1), a c l~ed  convex bounded set M c H ,  anini t ia l  

instant to, a final instant 0 ~ to ,  and a sequence of numbers 8t --~ --~-0. Find the 
sequences {x i} of elements of [-[ and {U i} of admissible strategies of the first player 
such that the condition x#  i Is] ~ M ' i ,  where M * i  is the ~t-neighborhood of set M 
is fulfilled for all motiom z i [t] ---- z It, {to, zi},  U ~, I T ] .  

From Theorems 2.1. 3.1 follows 
T h e o r e m  3. 3. If conditiom (a) and (c) are fulfilled, then the following sequen- 

ces {U solve  oblem 2-  
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z ~ ~ W,0 (0 ,  ~ )  

U i is the first player's strategy e x ~ m a l  to the sets Wt (0, 8~), to ~<~ t < ~ ,  

4 .  Problem I was simulated on an electronic computer for the system 

=" (0 --- = ( t - -  i )  + u - -  v (4.1} 

wherez, u,v are scalars, [u[~2, [v[~i, with re= 0, ~}= 2, M={0}CH. Iris 
obvious that for sysmm (4.1) the functional 

& 

t 

is convex in h. The function 

[--9, - - i  ~ s <~ 0.75 
9. - 0 . 7 s  ~ s < - 0 . 5  

=° (s) ---- | - - i . 5 ,  --0.5 ~. 8 ~ 0 
t i, s-----O 

was chosen as the initial sum,  lying in Wt, (~). Thus. by Theorem 3. I ,  the stramgy U • 
should solve Problem 1 .  Figure 1 a, b, c shows the ~rajectmies which co~te~pond to the 
strategy pairs { U', V~}, {/7", Y=} and { U', Va}, respectively. The ,~ategies V,, V~ 
and V a are defined by themts  V a (t, z) == {0}, Ys(t ,z)== { v - ~ - - s g n z ( 0 ) }  and 
vs (t,  x) = {v  == - -  sga x ( - - i )  / 2}. 
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