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We establish sufficient conditions for the successiul completion of a differ-
entjial-difference game of encounter in the case when the target set is a sub-
set of the space of initial states of the system, The paper is closely related
to the investigations in [1 - 6],

1, Consider the system
() =A@ z@t)+ Azt =) --B)u —CHv+w() (1.1)

Here = is the phase vector; vectors 4 and v are the controls of the first and second
players, respectively, moreover,
ueEP((t), v=Q (1) (1.2)

where P (1), Q () are convex compacta continuous in #; the mawices 4 (£)» 4 (¢),
B (1), C (1) are continuous; w () is integrable on any interval of the f-axis;
T = const >> 0. The segment z; () =z (¢ — 5) of a wajectory of (1.1) (here and
later s varies within the limits —7 << s << 0) is called the state of system (1.1) at
instant £,
Let H be the space of vector-valued functions z (s) which are square summable in
the quantity |{ z (s) [, with the norm
0 'y .
1@k =1z OF + { 1z@Fds) |, JaP =a%+ .+ o
{x, ¥ is the scalar product in H. The game to be considered consists of the follow~
ing [6]. We are given an initial instant Z,, an initial state z° (s) < H, a final instant
& >1t, ,andacertainset M < H (the target), The first player, knowing at each
instant 7 £ l¢o, O] the state 2, [-] = z; [s] =z [t < 5] of the system, swrives to
choose his own control so that the final state zg[s] would lie in Af. The second
player chooses his control by any means and strives, to the contrary, to have Zs Is} &=
M. Let us make the problem statement mare precise, We introduce some definitions
[s, 6].
Definition 1.1. A function u(?) (v (¢)), summable on [¢,, ¢ ] and satisfying

the condition
u@) =P @) (v(t) =Q (1)

for almost all ¢ & [¢,, 9], is called the first (second) player's program control, The
set of all program controls of the first (second) player is denoted {u} ({v}).
Definition 1.2. 1°. A rule which associates the set



2 - A.V.Kriazhimskii and Iu.8.0sipov

U =U@ z@@) <P @) (V) =V z()<Q()

with each pair p = {t, z(s)}, t = ¢y, 8], 2 (s) & H, named the position of the
game, is called the first (second) player’s strategy U (V) .

2*, Astrategy U (V) of the first (second) player is said to be admissible if the set
U (t, z (s)) (V (2 = (5))) defining this strategy is convex, closed, and upper semiconti-
nuous relative to inclusion in £, z (s)(in ¢, from the right),

3°. The first (second) player's trivial strategy U, (V,) is given by the sets
U, z(s) =P @) (V(t z(s)) =Q ().

4°. The first (second) player's program strategy U, (V) is given by the sets
U, z() ={u@} (VI z(s) = {v(2))), where u (¢) (v(2)) is the first(second)
player's program control,

Definition 1.3. 1°, Every function z [¢], absolutely continuous on [¢,, §]
and satisfying the condition
z [ty + 5] =2°(5) (1.3)

and, for almost all ¢ & [t,, © ] , the equality

il =A@zl + 4 Wzlt =t +B@Q)ultl =C@)vitl + w(t)

where the summable functions u [¢] and » [¢] satisfy the conditions u [¢] & U (t.
z, [s]), v[t] = Q (¢) for almost all ¢ = [t,, §],is called a motion z [Z, py, U,
V,] of system (1.1) from the position Py = {¢,, z° (5)}, corresponding to the strate-
gies U, V, (U is admissible),

2°, An absolutely continuous function z [¢], satisfying condition (1. 3) and, for
almost all ¢ & [¢,, 0], the equality

Tl =A@zl +A. )zt =11+ B@u(t) =C @) v () +w ()

is called a motion z lt, py, Uy, V,l of system (1.1) from the position p, = {Z,,
Z° (5) }, cotresponding to the strategies [/, V.

The system's motions defined in such a manner exist {7].

Problem 1. Given an initial position p, = {fy, z° (s)}, a final instant & > ¢,,
and a closed convex bounded set M < H (the target), Construct the first player's
admissible strategy U° such that all motions Z [t] =z [z, p,, U°, V,] satisfy the
condition zs [s] & M.

We also present the following definitions [6, 7].

Definition 1.4, Thesets W, H, t, << ¢t <9 are swongly u-stable if,
whatever be &, & lig, 0), t* & (g, ), () &= Wy, v (t) = {v}, there exists
u (t) & {u} such that the motion z [t] ==z [t, {t., z (5)}, U,, V,] satisfies the
condition z;« [s] &= Wye.

Definition 1,5, Theset W, (8), t, << 9, of program absorption of target
M by system (1.1) at the instant & is the collection of all z (s) & H possessing the
property : for any v (f) & {v} there exists u (£) & {u} such that the motion
z(t) =z[¢t, {ty, z (5)}, Uy, V,] satisfies the condition zs [s] = M.

In what follows it should be kept in mind that the concepts encountered below, which
are not accompanied by explanations, are contained in {5, 6], The following assertion
stems from Lemma 4 of [6].

Theorem 1.1, Let the initial position p, = {t,, 2° (s)} be such thatz° (s) =
Wi, (8). If the sets W, (8), fo <<t <<O are strongly u-stable, then the strategy U®
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extremal to them solves Problem 1,

On the basis of the theorem on the fixed pointof a multivalued mapping, sufficient con-
ditions were established in [6] for the strong u-stability of the program absorption sets
of a finite~-dimensional target in the general case of a nonlinear system with aftereffect,
Such conditions were formulated in an analogous manner also for the problem of guid-
ance onto a functional target (*), Inthe case of the linear system being considered we
indicate the necessary and sufficient conditions (and the effective sufficient conditions
ensuing from them) for the strong w.-stability of the program absorption sets of a func-
tional target, Let us state two auxiliary assertions analogous to the corresponding asser-
tions in [5],

Lemma 1,1, z(s) = W, (#) if and only if

mingay <1 {0 (8, £, ) + (4, 82, )} >0 (1.4

() (‘6‘; t, h) =T(ﬁ, ¢ h') —min‘UEM <, h>
r (t.’ tln h) =T (t‘v t*v h') —TI (t.! t#' h) + T3 (t*v t#’ h)

Here

Fy (8%, by B) = mazue b § F(t* 4+ 5, D BEUE dE)

t*

o (6%, ter B) = maZomie) b, F (0" + 5, DCERVE )

-
ra(t*, ta, B) = b, § Ft* + 5, Hw @ dE)
Al*,l*y (S) =F (t* + s, t*)y(o) +
(1}
§PEr+s et Aclta+ T+ 0y 0)dn=1(s8)

for & =t* —t, > 1,
Atg, 1%y (3) ={ :/((i'j-),ﬁ). ::[[:f:i]a)
for § =¢* —t, < t.the mamix F (§, 1) satisfies the conditions: F (§, §)=E
is a unit matrix, F@Em) =0 for qn>¢ (1.5)
OF (5, M/of =A(B)FE M+ A4 —DFE —1, m) for n<E
Lemma 1,2, Theses W, (8), t, << t< ¥ are strongly u-stable if and only if
infras {T (t*, ty, k) + infuew, (o) CAtx, wy, B —infyew w0 Y, £} >0

for any ¢, & [y, 0), t* & (t,,0). Here S isthesetofall k= H, || h|. < 1,
on which the difference

a (h) = infyewl*(s)< A(*, txl, hy — inf!lEWg*(G) <y, h>
is defined (the values a (k) = =+ oo are allowed),

*) This question was considered by Iu, S, Osipov: Problems in the Theory of Differen-
tial «Difference Games, Doctoral Dissertation, Sverdlovsk, 1971,
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Let By,.* be an operator adjoint to A 4 %, i.e, such that
(A, 12, by =<z, Biy 1xh}
for any 2 and z from H It is not difficult to establish that By, (* has the form

0
B!t. t*h (S) = T’ (t*’ t*,S)h(O) + S T’ (t* 'T' 7\, t*v S)h(ﬂ) d"l = g(S, h)
fofa =t. —t*>Tn -
B{*,Mh(s)-’—'{

for 8§ =1t* —¢, << 1. Here

F(t,8), s=0
Tit,s, S)={ Flh.i+T+9A4 E+T—5, s=(—1 0

g(s, ), s&[—1, —1+8],s=0
h{s—8), s€(—v+06.0)

and the prime denotes transposition, From Lemma 1.2 and from the theorem on the
separability of convex sets in space H there stem the following necessary and sufficient
conditions for the strong u-stability of the program absorption sets W, (9).
Theorem 1,2, Thesets W, (§), t, << t <<, are smongly u-stable if and only
if
inf”h"tgl{r (¢*, Lus Bg*.ah) - i[lfveWt*(a)<y, By, oh) —
infyawwe) (Y, Bty, 81>} >0 (1.6)
for any t, = (t,, B), 1* = (e, ¥], t*—t,<7T.

2. The verification of condition (1. 6) is difficult, Relying on Theorem 1,2, we
indicate effective sufficient conditions for the strong u-stability of sets W, (§). By
W, (8, m) we denote the program absorption set at instant § of a closed 7-neighbor-
hood M™ of set M. By virtue of Lemma 1.1 and of the definition of the operator B, 3,

W, (0, m) = {z(s)| minynp <1 [0 (8, £, b, M) — (z, By, o)) >0}  (2.1)
pl®, t, h, m) =p(®, t, k) +nllkik (2.2)
Further, let the following conditions be fulfilled :

a) the function p (8, ¢, ) is convex in h for all ¢ = [¢,,9 );

b) the sexs W, (¢, 7) are not empty for all > 0, ¢t = [¢,, 0 1.
We introduce the notation

Ag=At,3H, Bt':Bt,OH
if h & By, then K, (k) = {g | Br.sg =h}. It is not difficult to establish that the
subspace E, of space H, orthogonal to the subspace A¢ (th the closure of A;), is the
nucleus of the operator B, 4. From this and from the fact that H is the direct sum of
4, and E,, we obtain the following assertion,
Lemma 2,1, If h & B,, then there exists a unique element A; from K, (h),
belonging to 4,, and ’
K; (k) =hi+ E;
We set
P (hv 'fl) = SupUEWt (8. ) <y1 h>

Lemma 2,2. If he By, then
pf (h) n) = inngKt(h)p (‘B, tv - gv 7])
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Proof, Let h & By In view of (2,1),for any z & W, (8, n) and any g € K, (h)

<z,h> <p@, i, —g,m
whence

P M) Sinfoc g mp @ 8, —g, 1)
We show that for any ¢ >0 there exists z & W, (8, i) such that
<z hy > infegg oy P .1, — g, — el Ayl @.3)
Let k & 4;. We set N (k) = k + E;. On A; we define a functional
p(k)=inf,enpp @t —g,m)
By Lemma 2,1, N (I;) = K; (), Il & B,, therefore,
p()= infgexf([)p @t —gm 24

It is not difficult to establish that functional p (k) is convex, positively homogeneous,
and bounded,

Let us specify a subset L of space 4: in the following manner: y from 4; belongs
to L if and only if <y, k> < p (k) for all k & A;, It can be shown that z € Wy (8, n)
if and only if 4, 3 z € L. Indeed, let 4, gz & L. Let ¢ be an arbitrary elzment of H
and let B, 4 g = 1. Then, taking (2. 4) into account, we obtain

<z, By 8> =<2, By glp> =<4y oz, lp <p()<p (8,1, —g,n)

whence z & W, (§, n1). Conversely, let z € W; (¥, 7). Let % be an arbitrary element of

Ay Forany g N (),
{x, Bt,&_ g + P(ﬁ' t g, "l) = 0

or, since (A,,a z, 8 = (4, 4 3, k> .

<Ai,'9 z, —k> < p (07 t g, Tl)
Becawse g E N (&) is arbitrary,

(A4 g2, — B <infoeyyp @t g, M) =p(—¥k
hence, 4, 3 z € L. According to Theorem 2.2 in [7],
p (k) = max, -, <y, k> (2.5)
Let ¢ < 1; < 7. Proceeding from (2.1) we can show that
A, T B LyEA4NYEST—M T4, F @E&nCL
Then for an element z, € 4, 3 W; (#, v;,) we have, becawse L is closed in A,
' n+Sm—m)ClL

where § (n - 1) is a closed sphere in 4; of radius nm — 1, with center at 0, Let z be
an element of L such that <z, h;> = p (hy). We set

C={y=A+{1=Nz|0KA<1, z2E€ 2,4+ S M —ny))

Since L is convex, C C L. Let ¢ be an arbitrary positive number and let the element
y1 = Mz -+ (1 —Ay) z be such that || y; —z, ||, < e/ 2. Then, clearly, the M, (n — my)-
neighborhood of element 1, is contained in C. Since C C L, we conclude that in space
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A, some §-neighborhood Sy, 6 < ¢/ 2, of element Uy lies in L. Since € 4y, we
can find y € 4+ = A, 4 H such that y € Sy; therefore, ||y —z]l. < &. Since Sy C L,
an element z such that 4, 3z =y, belongs to W; (8, n). Moreover, with due regard
to (2, 4), we have
<z, hy m= <z, B, gh) = (A, g%, hp >z hp—e|h | =ph)—e|h | =
inffEK‘(h)p (G’ t,—g,m— Bﬂh, “-

Relation (2, 3) is proved, The lemma is proved.

Lemma 2.3, Leta finction z (t) be summable on [ty, t*],8 =t* — 1, <
T, t* <. Then t

te
Z(s)=Am o Ft*+5,82@ =] F@®+53z@)ds

Proof. At first let A = & — ¢* 2 7. Then, applying the Fubini theorem, we have
ix
Z@=B@= {0 ro:@a
tx
0
e nDmF@+aHFED+ | FO+attrLnAtTENFE+N N
ESte

From properties (1, 5) of the matrix F (§, n) we obtain
o® (s, 8, 8). /0t =0
for all 2, &, ¢ > &. Hence for all § & [t,, t*)
D=0 5H=F@+5¢

Consequently, the lemma's assertion is valid when A =& — * &1,
Let A = & — t* < 1. Then for s & [—A, 0], as above, Z (s) = B (s): fors € |—1,—4)
I
Z@=( Fer+8+09:0%E=B0

The lemma is proved, "

Theorem 2.1, Let conditions (a) and (b) be fulfilled, Then the set W, (8, M),
to << t <<® is strongly u-stable for any n > 0.

Proof, Let us show that condition (1.6) of Theorem 1,2 is fulfilled for any ¢, =
[to, B), t* = (t,, D), t* —t, << T. Let h,be an arbitrary element, || h,[j. < 1,
Biy.sho =M, Bi*sho = h,. Further,let g be an arbitrary element of 'K (Ry).
Using Lemma 2, 3 and the expressions for r; (¢*, t,, &) (i =1, 2, 3), we obtain

t

(e b he) = maxae g § F@+5,DBOuEED =n@®

is
t*

(0%t he) = mazee (0 K8, ) F@+5,DCOVEE) =P (6)

ln
ts

ro %, toy ) = g} F (@45, D0 ®dE) = Ps(®)

ta

Consequently,
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r(t*, tys hy) = P1(8) — P2 (8) + Ps(g), g Kix(hy) (2.6)
By Lemma 2.2,

infycw,xs, n Ys h2d = — pi(— kg, M) = — infueguwen P (B, 2%, &, M)
From this and from (2, 6),
r(t*, ty, hy) — infyewms, » <Y, hd = infgerxmn [P (B, *, &, n+
r(t*, ty, ho)] = infgerwma{[ri (8, t*, 2) + P1(8)] —
[ra (8, t*, g) + P2 (@)1 + [rs (D, *, 8) + ps (©)] + | R} =
infge kP (8, Ly, £, M) (2.7)
Further,
infyew, (8, m Yy B> = — p1, (—hy, M) = —infgex, P (B, ts, & 1) (2.8)

In view of (2, 7), (2. 8) the expression occurring under the inf sign in (1,6) equals, for
h =h,,
a (ho) = inftEKtt(hi)p (ﬁ’ tln g, 'f]) - infﬂEKt*(hx)p (01 t*v &, n) (2'9)

Obviously,
E;(Bishy) =he+ K, (0) (2.10)

From the definition of the operator A, * it follows that
Bt*, 8 = Bl*, t*Bt*, 8

Therefore, if Byx sg =0, then B,, ¢ = 0; consequently, K,, (0) > K« (0).
Hence, from (2, 9) and (2,10) and from the definition of the elements k,, &, it follows
that a (k) > 0. The thearem is proved, because %, is arbitrary,

Theorem 2,2, Let conditions (2) and (b) be fulfilled and let the set W,, (§)
not be empty. Then the sets W, (&), ¢, << t <<, are nonempty and strongly u-stable,

Proof., Let t* & (¢, 1. We show that W« (§) is not empty, Let z (5) &
Wi, 8), p = {to, ()}, v(t) = {v}. Let us prove that for some u* (t) = {u}
the motion z* [¢] =z [t, p, U,*, V, ] satisfies the condition z*x[s] = W» (0).
Let'm; =0, n; > sy > 0, and u; (£) & {u} be such that the motions z* [t} =
z It, p, Uy, V| satisfy the conditions z,#i [s] & Wy (&, ;). Such u; () exist
since the sets W, (8, 1), fo <<! <© are stongly u-stable according to Theorem
2.1and z (s) E W, (6) = W, (&, ni).

Since {u} is weakly bicompact in L, [¢,, t*], we can take it (by choosing a subse~
quence if necessary) that

u; (£) = u* (t) weakly in L, [z, *] (2.11)
By the Cauchy formula, ; - '
z'[t] = A1z (0) + SF ¢HIBEuE—-CEvE+w@Id (212
f
Proceeding from this expression we can show that the set of functions {z’ [t] |i =1,

2, ...} is uniformly bounded and equicontinuous on [z, £*], i.e, is compact in C [,
t*]. Therefore, we can take it (by choosing a subsequence if necessary) that x'[¢]—-Y(¢)
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in C [,. t*).On the other hand, from (2.11),(2.12) it follows that 2* [t] — z* [t] =
zlt, p, Uus, V,] forany t = [t,, t*]. Therefore, 2* [t] = y (¢), whence it fol-

lows that zpe' [s] = zx* [s] in H (2.13)
Let us select an arbimary element h & H. Since xt*i = Wex (8, ma)s
(zewt, BY <<pex (R, ;)

Since M > Misy, Wie (&, M) D Wix (8, my.,). Consequently, P+ (k, )
decreases monotonically as / increases, Therefore, with due regard to (2,13), we have

(zee*, by = limi <z#’, B) < inf; prx (B, 1) (2.14)
Hence, zs* = 1 W (9, n). Indeed,if zx*&E N W (8, 1), then a number ;,
n>0

n>o
exists such that zee* 6 W (8, 1), therefore, (z/«*, h) > P (h, M) for some
h,which contradicts (2,14) which is valid for all A. But, obviously, | W (3, ) =
n>0

W s (0). We have proven that W () is nonempty. The proof of the strong u-stability
is a verbatim repetition of the proof carried out for the nonemptiness with the instant
t, replaced everywhere by an arbitrary instant ¢, = {¢,, t*).

8, Let us ascertain the conditions necessary and sufficient for the fulfillment of
assumption (b) (for the nonemptiness of all sets W, (&, m), {, <t <o, 1 > 0).

Lemma 3,1. W, (®,n) is nonempty for any n, > O if and only if p (&, ¢,
k) > 0 forall h & K, (0) = {h | Bi,s b =0}.

Proof. Let W, (8, 1) be nonempty for any 1 > 0; 4 & W, (#, 1)). Then, in view
of (2.1), for any 4,

' <#™, By ghy +p (8, 8, A, M) 20
If B, gh =0, then by (2.2)
p@ th,)=p@ t,h)+nllr|l.20

whatever be 1 > 0; hence p (8, ¢, 2) > 0.
Conversely, let p (9, ¢, k) > 0 for all h & K; (0). On 4; we define a funcnonal
q (k) = infgeN(k) P (0’ t, _g)v N (k) =k + El

It can be verified that under the assumptions adopted the functional ¢ (k) is convex,
positively homogeneous, and bounded, Let ! & 4: be the support functional to ¢ (k)
at the point & = 0 (such a functional exists {8]). We have

minyy < (9 (k) — <L IS0 3.9
Let 1 > 0 and let p (k) be the functional on At introduced in the proof of Lemma
2.2, p (k) = infpenuy P (B, ¢ —g M)
Proceeding from (2.2) we can show that
p (k) = q (k) + n Il (3.2)

Let L e Ay, ||, — 1 {,<mn. Then from(3.1),(3.2), and the positive homogeneity of
p (k) it follows that p(k)— ¢I,, k> > 0, for all k4, ,i.e. |, = L (Lemma 2.2), But
then, as we have shown in the proof of Lemma 2,2, an element z such that 4, gz = I,
belongs to W¢ (8, 11). The lemma is proved,
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Lemma 3,2, If p(®, %, #) > 0 forall & & K,, (0), then, for any ¢ &= [z,
8). p@, t, ) >0 foral b = K; (0).

Proof, Suppose that the lemma's assumptions are fulfilled, Let us admit that for
some t* 2> t, there exists an element k* & K,, (0) such that p (9, t*, 2*) < 0. It is
not difficult to verify that the equality

® &
{n{re+an:@ay={B, r0r:0% t€itdlbecd @3
t t

is fulfilled for any summable function z (E), 7, < § <C @. As was established in the
proof of Theorem 2,1, K; (0) D K,, (0) for § < ¢*. Hence, for § < *, By g h* =
in H, consequently, B: g h* (0) = 0. Therefore, in view of (3, 3) we have

8 . 8
<h‘,tS;F(0+s,g)z(E)dz>=<h .'S‘F(0+8.€)X(E)di>

From this it follows that r; (8, to, h*) = r; (8, t*, &*) (i = 4, 2, 3); hence, p (&, to, h*) =
p (8, t*, h*) < 0, but this contradicts the assumption since i* € K, (0) C X, (0). The
lemma is proved,
The following assertion stems from Lemmas 3,1 and 3.2,
Theorem 3.1, Each of the following conditions is equivaient to condition (b):
c) p(®, ty, k) >0 forall h = K,, (0);
d) W, (8, n) isnonempty for all 11 > 0.
The following result ensues from Theorems 1,1, 2.2, 3.1,
Theorem 3,2, If the functional 0 (¥, ¢, k) is convexin h for all t & [¢,, §]
(condition (a) is fulfilled) and z° (s) & Wy, (8), then the smategy U* exmemal to
the ses W, (8), ¢, << t <<§, solves Problem 1.

I

7 A _
a \ b c
05 1 2T

05 1 2t

-1
Fig, 1

Let us consider the following problem,

Problem 2, Given system (1,1), a closed convex bounded set M < H, an initial
instant ¢,, 2 final instant & > ¢, , and 2 sequence of numbers &; — 0. Find the
sequences {z'} of elements of H and {U*} of admissible strategies of the first player
such that the condition zg' [s] = M ‘1, where Mt is the £;-neighborhood of set M
is fulfilled for all motions z° [t] =z (¢, {t,, z'}, UY, V..

From Theorems 2.1, 3,1 follows

Theorem 3, 3, If conditions (a) and (c) are fulfilied, then the following sequen-
ces {z'}, {U'} solve Problem 2:
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xi = Wto (ﬂ, 8,‘)
U is the first player’s srategy extremal to the sets W, (8, ), t, <t <9,

4, Problem 1 was simulated on an electronic computer for the system
W)=zt —1)+u—v (4.1)

where z, u, v are scalars, {ul< 2, [v| <1, with t, =0, 4 =2, M = {0} CH. Itis
obvious that for system (4,1) the functional
8
P, 1, h) = max i , (i (FO+5D2@ a8y
t
is convex in h. The function

-9, —-135<L0.75

9, —0.75 € s ~0.5
-—1.5, —05 < <0

1, s=0

2° (s) =

was chosen as the initial state, lying in W, (8). Thus, by Theorem 3.1, the swategy U*
should solve Problem 1. Figure 1 a, b, ¢ shows the trajectories which correspond to the
strategy pairs {U®, V,}, {U®, V,} and {U®, V,} ,respectively, The strategies V,, V,
and V, are defined by the sets V, (t, z) = {0}, V; (¢, z) = {v = — sgn z (0)} and
Vs(t,z) = {v=—sgnz(~—1)/2}.
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